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A b s t r a c t  

The present paper deals with the finding and the 
estimation of negative quartets. The use of symmetry is 
also discussed and the results obtained for four 
structures of increasing size are reported. Conditional 
probability distributions using magnitudes contained in 
the second representation of the quartets provides 
improved estimates of their phases. 

I n t r o d u c t i o n  

During recent years, direct methods have been 
developed to allow the crystal-structure determination 
of a great number of large molecules. Most of the 
currently available direct-method programs are based 
on the use of the single statistical triplet relation 

(sin (~0 H + ~0 K + ~0h-~))~ ~_ 0, 

from which the so-called tangent formula is derived. 
The estimate of the triplet cosine invariant by 

statistical formulae [e.g. MDKS (Hauptman, 1972; 
Giacovazzo, 1976a)] is a more accurate way of using 
the information provided by the triplet invariants. More 
recently, a modification of the classical tangent 
formula, making use of the estimated phases of the 
triplet invariants (Busetta, 1976), provided a good way 
of determining a structure in those cases where enantio- 
morph discrimination is difficult. However, in order to 
deal with large molecules - or with very troublesome 
small ones - it is necessary to use the whole 
information provided by the complete set of structure 
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invariants and seminvariants. This is the basic idea 
behind the SIR program. All the (sem)invariant phase 
relationships are estimated following the Sem Invariant 
Representation theory (Giacovazzo, 1977). The pre- 
sent available version of the program uses triplets, 
negative quartets and one-phase seminvariants. 

The present paper, the first of a series, deals with 
negative quartets. The positive quartets provide infor- 
mation which is strongly correlated to the information 
contained in triplet relations. Their use requires a more 
complicated approach and will be analysed in a future 
paper. Here we intend to develop different points 
concerned with finding and estimating negative 
quartets. Until now, only the four basis vectors and the 
three related cross vectors have been used in their 
estimation (Hauptman, 1974; Schenk, 1974); we will 
show that the use of symmetry (Giacovazzo, 1976b) 
and of the second representation can improve these 
estimates. 

In the estimation of quartets, seven vectors are 
necessary, the basis vectors H1, H 2, H 3 and H a whose 
sum is zero and the cross vectors H a + H 2, H~ + H a 
and H~ + H 4. Of these seven vectors only three are 
independent. It is possible to search in different ways 
for negative quartets. 

(1) Starting from three basis vectors with large 
magnitudes, H l, HE, H3, we may search for the fourth 
basis vectors H 4 and the three corresponding cross 
vectors, checking if they have weak magnitudes. 

(2) A second way is to start from three cross vectors 
U, V, W of weak magnitudes and to search for the four 
basis vectors 

H l = ½ ( U  + V + W),  H 2 = ½ ( U - -  V - -  W),  

H 3 -- ½ ( V -  U --  W) ,  H 4 = ½(W --  U --  V),  

checking if all of them display large magnitudes. 

© 1980 International Union of Crystallography 
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We preferred to search for negative quartets by sub- 
tracting two triplets which have a common basis vector 
of weak magnitude; that is to say the same way we 
used to build positive quartets (Busetta, 1976). This 
work can be done at the level of the SIGMA2 sub- 
routine of the M U L T A N  (Main, Woolfson & Germain, 
1971) package without requiring too many changes. 

Use of the space group symmetry 

Usually, the estimate of a quartet depends in its first 
representation on three cross vectors, but for a space 
group with symmetry higher than triclinic it may 
depend on more than three terms. This happens when 
one of the cross vectors is a symmetry-invariant 
reflexion, that is an invariant with respect to a 
symmetry operator, i.e. 

H =  Rs+H, 

where R s is a symmetry rotation matrix and Rs + is its 
transpose. 

For instance, if the quartet ~0 = ~0H, + ~DH2 + (]783 + (/984 

(I) has a symmetry-invariant reflexion as one of its 
cross vectors (e.g. H 1 + HE), we may define 

(fit = (/TR~H l + ( P a ~ n 2  + ( P a 3  + (pH4 " (II) 

N o w  (H~ + H2) + n 3 ÷ 1 4  : R+(HI + 1 2 )  + H 3 + H 4 
= R~H~ + Rs+H2 + H 3 + H 4 and therefore (II) is a 
quartet. We find 

q~' -- ~0 = 2zr(H 1 + H2)+T s 

with 

(pHl+nz:  (ffR~(Ht+Hz) ÷ 2zc(H~ + H2)+Ts . 

Then the estimate of ~p depends on five distinct cross 
magnitudes; three corresponding to ~p, 

IEH,+H~I, IEH,+H31, IEH,+H,I, 

the other two arising from ~0' 

[ER~H~+H31 , [ER~H,+H4 I. 

If (H~ + H2) is not a systematically absent reflexion, 
then cos ~0 may be expressed as cos 0 = II(B)/lo(B), 
where 

B ~ _ _  __  N EH'EH2EH~EH" [ W +  ~( IEcross  12 1)], 

if we use linearized formulae with W = 1 and N is the 
number of identical atoms in the unit cell. 

If two cross vectors are symmetry-invariant reflex- 
ions the problem is rather more complicated, and the 
phase of the quartet depends on more than five vectors 
(Giacovazzo, 1976b). While in space groups of class 
P2 only the 0k0 reflexions are special and a limited 
number of quartets is affected by symmetry, for space 

groups of higher symmetry a significant number of 
quartets may be influenced by the symmetry. For 
instance, in the space groups Pca21 (class Pmm2), the 
three classes of reflexions Okl, hOl and 00l are special. 

If symmetry is not taken into account, all the 
procedures to search for negative quartets would 
involve unavoidable duplications. Both quartets (HI, 
HE, H3, H4) and (R + H 1, R + HE, H3, H4) will separately 
appear during the search of the structure invariants. 
However, if the magnitudes (E n +H and E H +H) and 
(ER'H +H and ER+ H +H ) do not giv'e c~)ntributic~ns'of the 

.~ 1 3 s .  1 4 
same sense - for instance the first two are large (E ~_ 
2.00) and the other two weak (-~0.1) - the most prob- 
able phase of the correct quartet will be between 0 and 
re/2; if we use both previous distinct quartets the 
estimated phases will be near 0 and n. It is important to 
take the symmetry into account in both the cases where 
the negative quartets are directly used during the phase 
expansion and where they are only used as figures of 
merit. To introduce into the figure of merit quartets like 
(Rs+H1, R+H2, n3, H4) for which the phase is 
spuriously evaluated as rc instead of zc/2, will certainly 
reduce the efficiency of such a test. 

Negative quartets may also be obtained for which 
one of the cross reflexions, e.g. HI + H 2, is a systematic 
absence. Such reflexions are symmetry-invariant 
reflexions with the extra condition 27r(H 1 + HE)T s ~ 0. 
Then the phases of both quartets tpH ' + ~0H2 + ~0 H + ~0H, 
and ~PR+H + tPRm + q~H ÷ q~H do not differ by 2zr 3. If R s 
is a ro{a~ion ~a~rix o~ order' two, then the estimated 
value of tp is related to the observed cross vectors by a 
B term, 

2 
B = ~ [ E H E H 2 E H E H I  [([EH,+H312 -- 1) 

N 

12 1 ) -  ([ER~H,+H3I 2 -  1) × (IEH.+n ' -- 

-- ([ER~H,+H [ 2 -  1)[. 

In this case, we have W = 0 (Giacovazzo, 1976b). 
For instance, for the last quartet of Table 2, the four 
basis vectors are 

2 6 1 2 ,  8 i l ,  1-515, 3 1 2 .  

If we do not take the symmetry into account, the phase 
of this quartet depends on the magnitudes of three cross 
vectors: 

1803 ,  1123 ,  2 3 0 4 .  

As the first cross vector is a symmetry-invariant 
reflexion, the phase of the primitive quartet is also the 
phase of the symmetry-related one, of which the basis 
vectors are 

2 6 1 2 ,  8 i l ,  1--5i5, 3 1 2 ,  
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so that  this phase  also depends on two other mag- 
nitudes corresponding to the cross vectors 

1 1 0 3  and 2 3 2 4 .  

As the third cross vector (23 0 4) is a sys temat ic  
absence, the primitive quartet  is also related to another  
quartet :  

2 6 1 2 ,  8 1 1 ,  1 5 1 5 ,  3 1 2 .  

But  as the t rans la t ional  term 2nT s H is equal to re, the 
contr ibut ion of the corresponding cross vector (18 2 3) 
must  be t aken  negative. 

The use of  quartets  with a cross-reflexion which is 
sys temat ica l ly  absent,  may  be of significant impor tance  
in direct methods.  In usual  procedures,  sys temat ical ly  
absent  reflexions are not  included in the set of 
diffraction data.  This  cus tom is not  exceptionable when  
only triplet relations are used but it can give rise to a 
loss of  informat ion when quartets  are used. 

The usual  p rograms  of direct methods  discard 
quartets  as soon as one of  the cross vectors  is not 

measured so that  sys temat ic  absences are dealt with in 
the same manne r  as those reflexions which are outside 
the sphere of  measurement .  

Quarte ts  with an extinct cross-reflexion are very 
reliable due to the increase of  the number  of  cross terms 
involved with such a symmet ry - invar i an t  reflexion 
(Giacovazzo,  1976b). Fur thermore ,  these quartets  are 
more likely to be enan t iomorph  sensitive than  general 
quartets.  

Sys temat ic  absences related to non-primit ive space 
groups cannot  provide more negative quartets  than 
those given by the corresponding primitive space 
groups,  as it is impossible to build triplets involving 
only one sys temat ica l ly  absent  reflexion. For  instance,  
in space group C2 as in P2 there are more quartets  
involving sys temat ic  absences as cross vectors.  The 
cross vector H~ + H 2 is a sys temat ic  absence if (h~ + 
h2) + (k~ + k 2) is odd. But the basis magni tudes  of  the 
quartet  must  be large implying tha t  h~ + k~ and h 2 + k2 
should both be even. It is therefore impossible to have  
(h~ + h2) + (k I + k 2) odd. 

Table  1. The 15 most reliable negative quartets in azetidin (structure IV in Table 3) 

Each of the quartets has at least one symmetry reflexion as cross vectors and, depending on more than three cross vectors, they are more 
reliable than other general negative quartets. 

Basis vectors Cross vectors 

COSest. COStrue 
-0.5545 -0.99 2 2 6 1.64 4 2 2 2.18 2 0 4 0.26 19 5 3 0.37 13 1 5 0.13 

1-7 3 3 2.61 15 3 i 2.56 19 i 3 0.50 13 5 5 0.31 
-0.4990 0.72 26 1 2 1.89 8 i 1 2.12 1803 0.12 2267~ 0.19 12z) 5 0.10 

4 5 6  2.51 1-453 1.83 2244 0.28 1265 0-16 
-0.4412" -0.88 i 3 4 2.15 9 3 0 1.95 8 0 4 0.28 1--0 6 4 0.34 0 0 8 0.33 

3 8 2.32 1 3 4 2.15 1--0 0 z~ 0.63 8 6 2 1.15 18 0 8 0.41 
-0.3948* -0.67 4 2 2  2.18 222  1.61 200  0.30 844  0.19 2.40 0.15 

6 2 2 1.84 4 2 2 2.18 8 0 4 0.28 
-0.3663 -0.91 27 1 5 1.68 7 1 1 1.86 2006 0.27 1042 0.36 2422 0-11 

1-7 3 3 2.61 3 3 J 1.67 10 2 2 0.35 24 4 2 0.47 
-0.3648 -0.97 22 2 7 2.21 8 2 0 2.79 14 0 7 0.30 17 5 2 0.11 13 i 5 0.13 

3 5 1.46 9 3 2 1.59 17 1 2 0.71 13 5 5 0.31 
-0.3647* -0.47 622  1.84 ~,22 2.18 204  0.26 844  0.19 80z~ 0.28 

2 2 6 1.64 4 2 2 2.18 2 4 4 0.70 
-0.3508 0.98 2 2 8 1.62 12 2 0 2.37 14 0 8 0.25 lq 1 4 0.33 1 5 4 0.32 

1~ 3 ~, 1.79 i 3 ~, 2.15 17 5 4 0.58 1 i 4 0.61 
-0.3493 0.93 182 1 1.83 1220 2.37 60 1 0.19 13 5'1 0.34 17 i 5 0.22 

3 5 1.46 [ 3 4 2.15 13 1 4 0.40 17 5 5 0.62 
-0.3488 0.82 720  2.00 7 [0  1.93 0 1 0 0.01 6 i 4 0.35 844  0.19 

[ 3 4  2.15 124 1.68 8 i 4  0.60 644  0.55 
-0.3342 -0.07 725 1.49 [2 1 1.78 606  0.39 12 [0  0.13 2054 0.36 

1-9 3 5 2.14 13 3 [ 2.10 12 5 0 0.18 20 1 4 0.38 
-0.3264 -0.78 5 [ 4 1.48 1 1 2 1.78 6 0 6 0.39 14 2 0 0.17 l0 4 2 0.36 

9 3 4 2.34 15 3 2 1.88 14 4 0 0.22 10 2 2 0.35 
-0.3177 --0.96 2 | 3 1.50 8 1 [ 2.12 1002 0.14 2740 0.16 21 24 0.29 

2-933 2.21 193 1 1.61 2--7 2 0 0.12 2144 0.59 
-0.3174 -0-98 3 J 2 2.34 7 1 1 1.86 1003 0.34 5 5 3 0.08 1 i 4  0.16 

6 5 1.58 2 6 2 1.54 5 7 3 0.14 1 5 4 0.32 
-0.3149 0.02 2"i | 3 1.54 27 1 2 1.98 60 1 0.19 313 0 0.16 17 1 5 0.22 

i-023 1.55 4 2 2  2.18 31 10 0.15 1735 0.25 

* These three quartets are actually two-phase seminvariants, the estimated phase of which would be computed by a different formula, but 
the estimated phases we have here from the equivalent quartet do not seem too bad. 
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Experimental results 

As we have seen, when the symmet ry  is taken into 
account  the number  of  cross magni tudes  may  be 
greater than  three. I f  all of  them are weak and no 
systematical ly absent  reflexion occurs,  the negative 
indicat ion will have great reliability. For  instance, in the 
case of  azetidin (Colens,  Declercq,  Germain ,  Putzeys 
& Van Meersche,  1974) we computed  652 negative 
quartets  involving the observed reflexions. 79 of  them 
require extra cross terms because of  symmet ry  and 
they include the 15 most  reliable negative quartets  
listed in Table 1. The 15 most  reliable negative quartets  
for which one of  the cross reflexions is a systematic 
absence are reported in Table  2. 

In Table 3 we report  the average values we obta ined 
for the negative quartets  of  four different structures:  the 
first two are steroids (I and II) (unpublished) in space 
group P21 and P21212 ~ with a number  N of  non- 
hydrogen  a toms in the unit  cell equal to 40 and 80, 
respectively; va l inomycin  (Karle, 1975) is a structure in 
P1 with N ___ 160 and azetidin a Pca2~ structure with N 
_~ 200. The figures given in Table 3 are the mean  values 

of  the est imated and observed cosines when the 
negative quartets  are grouped in sets o f  20 (or 50 for 
azetidin) terms in ascending order of  the est imated 
cosine. 

First  we notice that  the reliability of  the negative 
quartets  is strongly dependent  on the number  of  a toms 
in the unit  cell. Fo r  the four structures we used the 
same threshold (Ema x = 0.40)  for the cross vectors and 
a number  (5n) of  possible basis vectors related to the 
number  (n) o f  a toms in the asymetr ic  unit  (as is usually 
done in structure determination).  

For  steroid I we got 230 negative quartets  for which 
the mean value of  the actual  cosine invar iants  is quite 
good ( - 0 . 5 0 0 ) .  

For  the other  structures the quartet  est imates are less 
accurate.  We obtained:  for steroid II, 180 negative 
quartets  with a corresponding mean actual  cosine equal 
to - 0 - 1 9 8 ;  for va l inomycin ,  310 negative quartets  with 
a mean cosine - 0 . 2 3 2 ;  for azetidin, 652 negative 
quartets  with a mean cosine - 0 . 1 4 8 .  

For  the last structure, belonging to a favourable  
space group, using the systematical ly absent  reflexions 
as possible cross vectors we obtained 756 more 

Table 2. The 15 most reliable negative quartets for  which at least one cross vector is a systematic absence for  
azetidin (structure IV in Table 3) 

basis vectors cross vectors 
COSest . COStrue 

-0.22614 -0.9167 19 1 5 1-76 1 i 2  1.78 1803 0.12 3123 0.18 lq010  e 
12 1 8 1.45 3-0 i 5 1.76 31 0 3 e 1"i 2 10 0.74 18 2 3 1.40(-) 

-0.23091 -0.9921 2933 2.21 2 i 3  1.50 2720 0.12 3123 0.18 063  e 
230  1.71 2930 1.61 31 20 1.09(-) 2723 1.38(-) 

-0.23367 -0.4284 228  1.62 820  2.79 1048 0.37 50 i e i 09 e 
2 ~) 1.96 3 2 1 1.75 10 0 8 1.39(-) i 4 9 0.52(-) 3 4 i 0.54(-) 

-0.23550 0.9864 811 2.12 2 i 0  1.52 601 0.19 2922 0.16 i-003 e 
21 1 3 1.54 2-7 i 2 1.98 29 0 2 e 1-9 2 3 0.99 6 2 1 1-39(-) 

--0-24346 0.4262 1266 2.43 32 1 1.75 1547 0.36 1704 e 88 1 0.19 
5 6 2 1.83 2-0 2 3 1.53 8 4 1 1.28(--) 

--0.24388 --0-9489 840  2.32 321 1.75 521 0.18 3303 e 2-26z~ 0.19 
25 z~ 3 1.58 3-0 2 4 2.07 5 6 1 1.23(--) 2-2 2 4 0.88(--) 

--0.24753 - 1.0000 934  2.34 3 2 i  1.75 613 0.18 2508 e 1353 0.11 
16 J 4 1.53 2-2 2 "I 2.21 6 3 3 0.98(--) 1"3 i 3 O. 13(-) 

--0.25043 0.1080 1634 1.53 1220 2.37 2814 0.31 ~)01 e 1353 0.11 
2-5 3 3 2.24 3 2 i 1.75 13 1 3 1.12(--) 

-0.25351 --0.6474 811 2.12 2 i 0  1.52 601 0.19 9 2 i  0.14 102 e 
1 1 2 1.78 7 1 1 1.86 9 0 1 e 1 2 2 0.99 6 2 1 1.39(-) 

--0.26378 --0.9865 14 5 4 2.74 8 2 0 2.79 22 3 4 0.38 3 0 i e 11 7 5 0.18 
1953 1.53 321 1.75 1135 0.87(--) 

--0.26911 --0.7422 4 5 6  2.51 2931 1.93 2527 0.19 2-303 e 882  0.19 
2q 3 3 2.00 ~, 3 z~ 1.52 8 2 2 1.15(--) 

--0.27429 --0.5829 2231 1.80 1220 2.37 3411 0.17 230:2 e 1353 0.11 
2-5 3 3 2.24 9 2 2 1.60 13 i 3 1.12(--) 

--0.27675 0.9896 4 3 4  1.52 1220 2.37 1614 0.31 1-]01 e 553 0.08 
17 3 3 2.61 1 2 i 1.78 16 3 4 1.33(--) 5 i 3 0.63(--) 

--0.29419 --0.6448 4 3 1 1.61 i 1 2 1.78 3 2 3 0.26 2-] 0 7 e 22 4 2 0.26 
2-9 3 i 1.93 26 1 2 1.89 3 4 3 1.28(--) 12 2 5 0.35(--) 

--0.32910 --1.0000 26 12 1.89 8 i l  2.12 1803 0.12 1123 0.10 2304 e 
15 1 5 1.45 3 i 2 2.34 11 0 3 e 23 2 4 0.95 18 2 3 1.40(--) 

e is for systematic absence. 
(-)  indicates the cross vectors for which the translational term exp [i2z~TsH] = --1. 
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Table 3. Some averages o f  negative estimated quartets 
f o r  four  test structures 

Structure I 
(steroid) P21, N ,-, 40, 
230 negative quartets 

Structure II 
(steroid) P21212 l, N "~ 80, 

180 negative quartets 
estimated o b s e r v e d  estimated observed 

-0.302 -0.263 -0.110 -0.102 
-0.340 -0.273 -0.135 -0.105 
-0.362 -0.307 -0.160 -0.109 
-0.396 -0.591 -0.190 -0.054 
-0.413 -0.274 -0.214 -0.438 
-0.461 -0.602 -0.241 -0.371 
-0.484 -0.633 -0.260 -0.271 
-0.506 -0.784 -0.302 0 
-0.531 -0.517 -0.338 -0.334 
-0.560 -0.610 
-0.695 -0.741 

(cos) = -0-500 (cos) = -0.198 

Structure III 
(valinomycin) P1, N ~_ 160, 

310 negative quartets 

estimated observed 
-0.061 -0.019 
-0.080 0.055 
-0.095 -0.222 
-0.108 -0.269 
-0.138 -0.054 
-0.161 -0.120 
-0.180 -0.484 
-0.204 -0.165 
-0.228 -0.347 
-0.250 -0.132 
-0.282 -0.309 
-0.308 -0.238 
-0.343 -0.112 
-0.395 -0.476 
-0.462 -0.625 

(cos) =--0.232 

Structure IV 

(azetidin) Pca21, N ,,~ 200 
756 negative quartets 652 negative quartets 

with systematic absences without systematic absences 
estimated observed estimated observed 

-0.009 0. I01 
-0.016 0.079 
-0.023 -0.141 
-0.032 -0.189 
-0.042 -0.148 
-0.054 -0.069 
-0.066 -0.035 
-0.076 -0-104 
-0.088 0.039 
-0.101 -0.159 

-0.115 -0.244 
-0.130 -0.141 

- 0 . 1 4 9  -0.097 
--0.173 -0.160 

--0.224 --0.228 

(cos) = --0.100 

--0.080 0.038 
--0.096 --0.183 
--0.107 0.013 
--0.115 --0.068 
--0.125 --0.128 
- -0 .134  - -0 .170  
--0-142 --0.226 
- -0 .151  - -0 .047  
--0.163 --0.137 
--0.178 --0.146 
--0.195 --0.148 
--0.224 --0.347 
--0.307 --0.376 

(cos) = -0.148 

negative quartets. If such quartets involve at least four 
observed cross vectors, the term W = 0 instead of W = 
1 explains a less reliable determination (mean cosine 
- - 0 . 1 0 0 ) .  

In Tables 1 and 3, another aspect of the quartet 
estimate may be noticed. For steroids I and II and for 
valinomycin, we have a smaller number of negative 
quartets and we rank them in groups of 20 quartets. 
The differences between the observed and the estimated 
mean cosine invariant for each group are greater in 
these cases (mean difference 0.10) than for azetidin 
where we could use groups of 50 quartets (mean 
difference 0.06). Thus for a sufficiently large number of  
quartets corresponding to the same range of the 
estimated cosine, this value is a good estimation of the 
actual cosine invariant. But for the four structures 
within each group the mean difference between this 
mean estimated cosine and the actual cosine of each 
individual is always very high (about 0.60). In each 
group we have a great number of positive quartets and 
a great number of negative ones in such a way that the 
actual cosine is, on average, equal to the estimated 
cosine, but there is almost no quartet whose cosine is 
equal to the estimated value. The small list we give of 
the most reliable cosines for azetidin is a good example 
of what happens. 

T h e  s t r e n g t h e n i n g  o f  n e g a t i v e  q u a r t e t s  f r o m  t h e  s e c o n d  
r e p r e s e n t a t i o n  

The estimation of an n-phase invariant may be written 
as (Giacovazzo, 1977) 

(cos ¢p) = G1/N n:2-1 + G2/N n/2 + Ga/N T M  + "" ", 

where G 1 is a function which depends on the basis and 
cross magnitudes of the first representation of ~0, G 2 is a 
function which depends on the basis and cross 
magnitudes of the second representation of ~, etc. 

In the case of quartets the first representation, which 
we used in the first part of this paper, involves seven or 
more magnitudes (first phasing shell) according to 
whether one or more cross vectors are of special type. 
The second representation of any general quartet ~0n, + 
~°H2 + ~°H3- ~°H, + H2+ H3 is the set of special sextets 

(/TH l "4- (fill 2 "4" (/gn 3 - -  (ffH,+H2+H 3 + (ffK - -  (ffK' 

whose phases may be estimated from 22 magnitudes 
(second phasing shell). Seven of these already belong to 
the first phasing shell. The other ones have indices 

K ,  H l + K ,  H 2 _+ K ,  H 1 + H 2 + H 3 -I- K ,  

H 1 + H 2 +_ K ,  I-I 2 + H 3 _ K ,  H~ + H 2 + H 3 _ K ,  

In this work, we only used a subset of the 22 
magnitudes, with the following notation: 
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H i  H 2 H 3 H i + H 2 + H 3 K 

(E l )  (E2) (E3) (ET) (ES) ;  

H1 + H2 Hi + H 3 H 2 + H 3 H~ + K H 2 + K 
(E4) (E5) (E6) (E9) (~10) 

H 3 - -  K H l + H 2 + K H l + H 2 + H 3 + K .  

(c,,)  (~,9 (~,~) ' 
where ei stands for (IEil 2 -  1). 

The cosine invariant can again be expressed by a 
ratio of two modified Bessel functions Ii(G)/Io(G ) but 
when using the second representation, the argument is 
given by (Giacovazzo, 1979) 

For structure III (N = 160), 32 quartets are dis- 
carded from the initial 310 negative ones with a mean 
cosine equal to -0 .030  instead o f -0 .232 .  

For structure IV (N = 200), no tentative partition 
between the negative quartets gives any improvement. 

The results presented here are sufficiently encourag- 
ing for us to expect that quartet estimations will be 
improved as soon as more accurate mathematical 
formulae have been derived for the second rep- 
resentation and more efficient computing procedures 
become available. 

D i s c u s s i o n  

2 
G = - - I E I E 2 E 3 E T I  [IE412 + IE512 + IE612-2 

N 

where 

+ (1/N)f]/(1 + Q/2N), 

Q = el e2 E 4 -I- E 1 E3 E5 -t- E 1 E 6 E 7 -I- E 2 E 3 E 6 -t- E 2 E 5 E 7 

Jr- E 3 E 4 E 7 -t- E l E 8 E9-{- E l EIO El2 "1- E 2 E8 EIO 

-t- E 2 E 9 E12 -t- E 3 E 8 Ell  -4- E 3 El2 El3 -t- E 4 E 8 El2 

h- E 5 E 9 Eil  -I- E 5 El0 El3 -t- E 6 E 9 El3 -t- E 6 EIO El l  

q- E 7 E 8 El 3 q- E 7 Ell  El2 

(Q is set to 0 when this expression becomes negative) 
and 

f = ½[(e 8 C 9 -t- El0 El2)E 1 -I- (E 8 El0 -{- E 9 EI2)E 2 

+ (E 8 Ell  + El2 EI3)E 3 -t- (E 8 El3 + El l  E12)E7] 

X (E 4 "Jr E 5 "+- E 6 q- 1 ) - - [ ( E  8 E 9 "+" E 8 E10)(El l  "4- /~12 -{- El3) 

+ (Ell + E,3)(E8 El2 + E9 E,2 + E,0 E,9].  

This expression is more accurate if all the mag- 
nitudes corresponding to the K vectors are large. In 
practice we used the 100 largest normalized structure 
factors and their symmetry-related vectors in the 
estimate. However, our computer program was not 
able to avoid duplications of contributions to f and Q 
(they easily occur because K is a free vector). This 
reduces the efficiency of the probabilistic approach, so 
that we used it only as a means to discard negative 
quartets which were suspected to be positive. 

For the four test structures we used, the efficiency of 
our procedure to detect positive quartets in a set of 
negative.ones is strongly dependent on the number of 
atoms N, as may be expected from the mathematical 
expression. 

For structure I (N = 40), 15 quartets are discarded 
from the initial 230 negative quartets, with an actual 
mean cosine equal to 0.113 compared with the mean 
cosine equal to -0 .500  for all 230 quartets. 

For structure II (N = 80), 38 quartets are discarded 
from the initial 180 negative ones with a mean cosine 
equal to -0 .085 instead of -0 .198 .  

It is well known that the use of negative quartets as 
figures of merit in the multisolution process instead of 
the usual PSI ZERO test is a fairly good improvement 
when the set of reflexions used in the phase deter- 
mination are divided into unrelated subsets (i.e. the so- 
called island problem; see for instance Busetta, 1973). 
In that way, we may avoid troubles which are usually 
related to the presence of independent molecules or to 
the peculiar nature of the space group (P1, P21... ). 
When only the island problem occurs, all the phases of 
the unrelated subsets of reflexion can be estimated from 
strong triplet relations. Between the reflexions of the 
different subsets there are no or only poorly estimated 
triplet relations. Conversely, well estimated phases of 
quartets involving reflexions from the different subsets 
can be used to solve the final problem of the phase 
determination. 

In this paper we have shown that the negative 
quartets for which one or several cross vectors are 
symmetry-invariant reflexions are more accurately 
estimated than the other quartets because they depend 
on more than three cross-vector magnitudes. The 
resolution of the island problem, which is strongly 
related to the negative quartets, should be easier for 
space groups of high symmetry than for triclinic. We 
also showed that the use of systematic absences as 
possible cross vectors provides an important number of 
well determined negative quartets, and space groups 
having glide planes would give a significant number of 
quartets. 

But if this study shows which kind of negative 
quartets must be preferentially used as figures of merit, 
nevertheless the number of well determined negative 
quartets remains too small to allow their successful use 
beside the triplet relations in the phase refinement. In 
particular, they cannot balance the disastrous influence 
of the triplet relations in the case of structures for which 
there is an acute enantiomorph problem and further 
improvement of the quartet estimations should be 
worthwhile in that way. 

One of us (BB) would like to thank the Centre 
National de la Recherche Scientifique for the fellow- 
ship awarded during the course of this research. 
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Abstract 

A phase relationship involving triplet and quartet con- 
tributions is given. It is able to take account of the 
correlation between triplet and quartet relations. The 
information exploited by the formula is discussed and 
compared with that exploited by phase relationships 
arising from the properties of the Fourier transform of 
periodic positive f_unctions. In particular, the infor- 
mation contained in a Karle-Hauptman determinant of 
low order is briefly considered. 

I. Introduction 

The properties and the use of quartet relations in direct 
procedures can be approached from two basic points of 
view: (a) the properties of the Fourier transform of 
periodic positive functions (i.e. the electron density 
function); (b) the application of joint probability dis- 
tribution methods. We show in this paper that phase 
relations based on (a) hold only if some restrictive con- 
ditions are satisfied. On the other hand, phase relations 
based on (b) can be extensively applied in the usual pro- 
cedures for phase solution. In practice, the probabilistic 
approach can provide phase relations more useful than 
those provided by (a). 

Triplet and quartet relations can be used together in 
phase-determination processes. Since a quartet is the 
sum of two triplets, a strong correlation may exist 
between the sets of estimated triplets and quartets. 
Unfortunately, triplets and quartets have been used so 
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far as independent relationships. In practice this 
assumption can lead to undesirable effects, e.g. to the 
'squaring' effect of E 2 relationships the 'cubing' effect 
of quartet relations is added. In this paper a formula is 
given, involving triplet and quartet relations, which is 
able to take account of the correlation between the two 
kinds of phase relationships. 

The value of Karle-Hauptman determinants of low 
order is mostly determined by triplet and quartet con- 
tributions. We discuss the information contained in 
such determinants and briefly compare it with the 
information exploited in our probabilistic approach. 

2. Phase relations arising from the Fourier transform 
offf'(r) 

For a structure containing atoms which are fully 
resolved from one another the operation of raising p(r) 
to the nth power retains the conditions of resolved 
atoms but changes the shape of each atom. In practice 
it is possible to substitute, with an accuracy quite 
sufficient for the purpose of structure analysis, p(r) by a 
sum of N spherically-symmetrical atomic functions: 

N 
p(r) = X p~( r -  r ) .  

j= l  

pj(r) is an atomic function and rj is the coordinate of 
the center of the atom. When a function is periodic, its 
nth power is periodic with the same unit cell but with a 
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